2010 年度 芝浦工業大学 システム工学部 電子情報システム学科

総合研究論文

X線天文衛星の解析法を用いたデータ解析学習教材の作成と 検証

Making and verification of X ray data analysis learning material

顔写真を貼る

P07096-3

まきの じゅんや 牧野 純也

指導教員: 久保田あや 准教授

目 次

第1章	はじめに	1
第2章	X 線天文学と X 線天文衛星すざく	2
2.1	X 線天文学と X 線天文衛星	2
	2.1.1 X 線天文学	2
	2.1.2 X 線天文衛星の歴史	3
2.2	X 線天文衛星「すざく」	3
	2.2.1 X 線天文衛星すざくの概要	3
	2.2.2 搭載機器	4
	2.2.3 X 線望遠鏡 (XRT)	5
	2.2.4 X線 CCD カメラ (XIS)	5
	2.2.5 硬 X 線検出器 (HXD)	$\overline{7}$
2.3	スペクトルからわかること	8
	2.3.1 スペクトルとは	8
	2.3.2 連続スペクトル	9
	2.3.3 線スペクトル	9
2.4	本研究で用いる X 線スペクトルモデル	11
	2.4.1 ベキ関数モデル (power-law)	11
	242 星間吸収モデル (wabs)	11
		ТT
<i>fete</i>		11
第3章	X線スペクトル解析の流れ	13
第 3章 3.1	X 線スペクトル解析の流れ 観測データ	13 13
第3章 3.1	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類	 11 13 13
第3章 3.1	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル	11 13 13 13 14
第3章 3.1 3.2	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成	 11 13 13 14 15
第3章 3.1 3.2	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event	11 13 13 13 14 15 15
第3章 3.1 3.2	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出	 13 13 13 14 15 15 15
第3章 3.1 3.2	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出	 13 13 13 14 15 15 15 15
第3章 3.1 3.2	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション	11 13 13 13 14 15 15 15 15 15 15
第3章 3.1 3.2 3.3	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成	11 13 13 13 14 15 15 15 15 16
第3章 3.1 3.2 3.3	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成 3.3.1 RMF ファイル	11 13 13 13 14 15 15 15 15 15 16 16
第3章 3.1 3.2 3.3	X線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成 3.3.1 RMF ファイル 3.3.2 ARF ファイル	113 133 133 143 155 155 155 165 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
第3章 3.1 3.2 3.3 3.4	X 線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成 3.3.1 RMF ファイル 3.3.2 ARF ファイル xspec によるスペクトル解析	11 13 13 13 13 13 14 15 15 15 15 15 16 16 17
第3章 3.1 3.2 3.3 3.4 第4章	X線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成 3.3.1 RMF ファイル 3.3.2 ARF ファイル xspec によるスペクトル解析 教材の作成	11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 15 16 16 16 17 18
第3章 3.1 3.2 3.3 3.4 第4章 4.1	X線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X線イベントの抽出 3.2.3 パックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション 応答関数の作成 3.3.1 RMF ファイル 3.3.2 ARF ファイル xspec によるスペクトル解析 教材の作成 教材の目標と方針	11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 15 15 16 16 16 17 18 18
第3章 3.1 3.2 3.3 3.4 第4章 4.1	X線スペクトル解析の流れ 観測データ 3.1.1 データの種類 3.1.2 データ形式 Fits とイベントファイル データリダクションとスペクトル作成 3.2.1 cleaned event 3.2.2 目的天体の X 線イベントの抽出 3.2.3 バックグラウンド領域のイベントの抽出 3.2.4 その他のデータリダクション ぶ3.1 RMF ファイル 3.3.1 RMF ファイル 3.3.2 ARF ファイル xspec によるスペクトル解析 教材の作成 教材の目標と方針 4.1.1 教材の到達目標	11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 15 16 16 16 16 17 18 18 18

	4.1.3 実習用データファイルと解説書の仕様	18
4.2	教材とする天体の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	4.2.1 教材に使用する天体の条件	18
	4.2.2 活動銀河中心核 (AGN)	19
	4.2.3 5 つの活動銀河核の画像とスペクトルの作成	19
	4.2.4 5 つの活動銀河核のスペクトルモデル	24
	4.2.5 教材用天体の決定	26
4.3	実際の教材作成と実習の流れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	4.3.1 実習用観測データのエクセル化	27
	4.3.2 データリダクションの実習	27
4.4	スペクトル抽出の実習	29
	4.4.1 パルスハイトスペクトル	30
	4.4.2 パルスハイトスペクトル抽出の実習	30
	4.4.3 エネルギースペクトル	32
	4.4.4 エネルギースペクトルへの変換手順	32
	4.4.5 天体本来のスペクトルの抽出手順	33
第5章	教材の評価と効果の検証	34
5.1	教材の評価	34
	5.1.1 評価の仕方	34
	5.1.1 評価の仕方	$\frac{34}{34}$
	5.1.1評価の仕方	34 34 34
第6章	5.1.1 評価の仕方	34 34 34 35
第6章 6.1	5.1.1 評価の仕方	34 34 34 35 35
第6章 6.1 6.2	5.1.1 評価の仕方	34 34 34 35 35 35
第6章 6.1 6.2 付録A	5.1.1 評価の仕方 5.1.2 実習と改善点の洗い出し 5.1.3 教材効果の期待 まとめ 本研究の成果	34 34 35 35 35 36
第6章 6.1 6.2 付録A A.1	5.1.1 評価の仕方	34 34 35 35 35 35 36
第6章 6.1 6.2 付録A A.1 A.2	5.1.1 評価の仕方	34 34 34 35 35 35 36 36 37
第6章 6.1 6.2 付録A A.1 A.2 A.3	 5.1.1 評価の仕方	 34 34 34 35 35 36 36 37 38
第6章 6.1 6.2 付録A A.1 A.2 A.3 A.4	 5.1.1 評価の仕方	 34 34 34 35 35 36 36 37 38 39
第6章 6.1 6.2 付録A A.1 A.2 A.3 A.4 A.5	 5.1.1 評価の仕方	34 34 35 35 35 36 36 37 38 39 40

第1章 はじめに

宇宙の中でも高温でかつ激しい活動領域からは、多量のエネルギー放射が行われている。この 「激しく活動している」宇宙の本質を知るためにX線観測が不可欠である。「すざく」「あすか」な どのX線天文衛星で観測されたデータは、宇宙情報解析センターによって一般公開され、誰でも 解析のためのデータを得ることができる。しかし、X線の検出は可視光と異なり、入力エネルギー と出力電圧が線形ではない。また、検出器の感度がエネルギーに強く依存することなどから、解 析を始めたばかりの大学生や大学院生が、データ解析によって、実際どのようなことを行ってい るのか正しく理解することは難しい。本総合研究では、X線天文衛星のデータ解析を始めたばか りの大学生や大学院生がデータリダクションや応答関数などスペクトル解析を理解するための補 助教材を作成することを目的とする。

第2章 X線天文学とX線天文衛星すざく

2.1 X線天文学とX線天文衛星

2.1.1 X 線天文学

X 線天文学は、観測天文学の一分野である。人工衛星に X 線検出器を搭載し、天体から放射さ れる X 線を観測することによって研究を行う。 X 線は主に数百万度から数億度という非常に温度 の高い領域から出ている波長の光である。つまり激しく活発な活動をしている場所から X 線が出 ているのである。X 線を放出する天体には、新星爆発、ブラックホール、活動銀河核、銀河間の 高温のプラズマなどがあり、これらを観測することで暗黒物質や宇宙の大規模構造、強大な重力 場での粒子の運動を解明することができる。こうした領域は宇宙では珍しいものではなく、逆に 宇宙に存在する物質の 9 割以上が X 線でなければ観測できない。 つまり、星から銀河に至るほと んどの天体は X 線天体ということができ、X 線を解析することにより宇宙解明が進展するとされ ている。

X線放射はほぼ100%地球の大気によって吸収されるため、X線の観測装置は高い高度へ運ば なければならない。そのためにかつては気球やロケットが用いられた。現在ではX線天文学は宇 宙探査の一分野となっており、X線検出器は人工衛星に搭載されるのが普通となってきた。

2.1.2 X線天文衛星の歴史

ここで X 線天文衛星についてまとめる¹。世界で初の X 線天文衛星は、1970 年 12 月に米国マ サチュッセツ工科大学のロッシ、ジャッコーニらのウフル衛星の打ち上げとなって実現した。そし てウフル衛星はその後数年にわたり全天を隈なく走査し、330 個以上の X 線源を観測し、初めて X 線天体カタログを作成した。ここに X 線による宇宙・天体の観測的研究が天文学の一分野とし て本格的にスタートした。日本最初の X 線天文衛星「はくちょう」は「ウフル」 に遅れること 8 年余の 1979 年 2 月に打ち上げられた。「はくちょう」の打ち上げに成功して以降は 1983 年の「て んま」、1987 年の「ぎんが」、1993 年の「あすか」、2005 年の「すざく」と継続的に X 線天文衛 星を打ち上げることが出来た。「はくちょう」では、すだれコリメーターを用いた中性子星 X 線連 星/X 線バースターの研究、「てんま」では蛍光比例計数管による X 線天体からの鉄輝線の研究、 「ぎんが」では大面積低ノイズ比例計数管による活動銀河核・銀河団の研究と衛星ごとに特徴のあ る観測で成果を挙げた。

2.2 X線天文衛星「すざく」

2.2.1 X線天文衛星すざくの概要

「すざく」衛星(Astro-E2)は2005年7月10日打ち上げられた日本で5番目の衛星である。基本となる構体は直径2mの八角柱で、太陽電池パネルを広げると5.4mの幅になる。全長6.5m(軌道上で鏡筒を伸ばした時)となり、総重量は1600kgに達する。「すざく(ASTRO-EII)」は3軸制御で、太陽電池パネルが太陽から約30度以内の方向に常に向くように姿勢を制御する。科学機器の観測方向は太陽電池パネルの通常の軸に垂直に向けられるので、観測できる範囲は太陽から60度、120度の角度範囲に限定される。「すざく」衛星の目的として、X線、ガンマ線による高温プラズマの研究、宇宙の構造と進化の研究、ブラックホール候補天体と活動銀河核の広帯域のスペクトル研究がある。

表 2.1: すざくの特徴 [1]

打ち上げ日時	2005年7月10日
打ち上げ場所	内之浦宇宙空間観測所
質量	1700kg
形状	6.5m × 2.0m × 1.9m(太陽電池パドルの端から端まで 5.4m)
高度	570km
傾斜角	31 度
軌道種類	円軌道
周期	96分

¹http://www.darts.isas.jaxa.jp/classroom/app/index.html

図 2.1: すざくの概観 [1]

2.2.2 搭載機器

「すざく」衛星には5つの軟X線検出器と1つの硬X線検出器が搭載されている。軟X線望遠鏡は、 5つのX線反射鏡 (X-ray telescope;XRT) と5つの焦点面検出器 (4つの XIS 検出器と1つの XRS 検出器) からなる。XIS (X-ray Imaging Spectrometer) はX線 CCD カメラで、0.2-12 keV のエネ ルギー帯域をカバーし、 典型的なエネルギー分解能は 130eV である。XRS (X-ray Spectrometer) はX線マイクロカロリメータで、エネルギー帯域は XIS と同程度、典型的なエネルギー分解能は 6eV である。2005 年 8 月 8 日、XRS で使用している 液体ヘリウムが消失するという事故が発生 し、XRS による観測は不可能になった。 さらに高いエネルギー (10-700 keV) のX線を観測する ために開発されたのが硬 X線検出器 (Hard X-ray Detector; HXD) である。「すざく」では XIS4 台と HXD で同じ天体を同時に観測することができ、広いエネルギー帯で高感度の X 線分光が可 能である。特に、硬 X 線領域 (10-300keV) においてこれまでで最高の感度、軟 X 線領域 (0.3-1 keV) で、これまでの CCD カメラに比べて高い感度と分解能を実現している。各検出器の特徴や 性能を表 2.2 にまとめる。

XRT	焦点距離	4.75m
	視野 (FWHM)	17 '@1.5keV,13 '@8keV
	Plate scale	0.724 arcmin/mm
	有効面積	$440 \text{cm}^2 @1.5 \text{keV}, 250 \text{cm}^2 @8 \text{keV}$
	角分解能	2 '(HPD)
XIS	視野	17 '8 × 17 '8
	エネルギー帯域	0.2-12 keV
	有効画素数	1024 × 1024
	1 画素のサイズ	24 µ m × 24 µ m
	エネルギー分解能	$\sim 130 \mathrm{eV}@6 \mathrm{keV}$
	有効面積 (XRT-1 込み)	$340 \text{cm}^2(\text{FI}), 390 \text{cm}^2 (\text{BI})@1.5 \text{keV}$
		$350 \text{cm}^2(\text{FI}), \ 100 \text{cm}^2(\text{BI})@8 \text{keV}$
	時間分解能	8s (Normal mode),7.8ms(P-Sum mode)
HXD	視野	34 ' × 34 '($\lesssim 100 \text{ keV}$),4 °.5 × 4 °.5($\gtrsim 100 \text{ keV}$)
	エネルギー帯域	10-600 keV(PIN 10-70 keV,GSO 40-600 keV)
	エネルギー分解能	PIN~4 keV(FWHM),GSO7.6 (P-Sum mode/ EM eV)
	有効面積	$\sim 160 {\rm cm}^2$ @20keV, $\sim 260 {\rm cm}^2$ @100keV
	時間分解能	61 ms

表 2.2: 「すざ	د >	に搭載されている観測機器	[2]	
------------	-----	--------------	-----	--

2.2.3 X 線望遠鏡 (XRT)

すざくの X 線望遠鏡 (XRT)[3] は、あすかの XRT よりもひとまわり大きいもので、口径 40 cm、 焦点距離 4.75 m の XRT-I (焦点に XIS を置くもの)が4 台と、 口径 40 cm、焦点距離 4.5m の XRT-S (焦点に XRS を置くもの)が1 台ある。反射鏡は、アルミ薄板にレプリカ法で鏡面を形成 したレプリカミラーをそれぞれ175 および168 枚同心円状に並べて、小型超軽量だが高い効率の X 線望遠鏡を構成している。この望遠鏡では光学系として、双曲面と放物面からなる Wolter I 型 と呼ばれるものを円錐2段で近似して用いている。

2.2.4 X線CCD カメラ (XIS)

XIS 検出器 (X-ray Imageing Spectrometers)[4] は、X 線 CCD カメラである。この検出器は、 0.2-12keV の X 線を捉えることができ、天体の撮像と X 線スペクトルの取得を目的としている。 XIS は 4 台の X 線 CCD カメラから構成され、「あすか」に搭載された CCD カメラ (SIS) に比べ て、高エネルギーの X 線に対する感度が向上している。また、CCD の動作温度を-90 まで下げ たことで暗電流を押さえ、電荷転送非送率を減少させるなどの様々な工夫がされている。

XIS の4台のセンサーをそれぞれ X0, X1, X2, X3と呼ぶ。また、CCD には表面照射型 (Frontside Illuminated; FI) と裏面照射型 (Backside Illuminated; BI) がある。表面照射型 CCD では X 線を 電極側から入射するため、低エネルギーの X 線は電極や絶縁層で吸収されてしまうのに対し、裏 面照射型 CCD では X 線を電極の逆側から入射するため低エネルギーの X 線に対して高い検出効 率を得ることができる。

5

XIS の観測モードは、Clock モードと Edit モードという異なる 2 つのモードから定義される。 Clock モードには、Normal と Parallel-sum (P-sum) の 2 通りがある。

- Normal モードは CCD の全てのピクセルを通常 8 秒周期で読み出す。この場合、露光時間は 8 秒になる。Normal モードは Edit モード (5 × 5, 3 × 3, 2 × 2 のいずれか 8) と組み合わせることができる。また、Burst オプションや Window オプションを指定できる。
- P-sum モードは、撮像領域において縦方向に 64/128/256 列を加算し、一列分ずつデータを 読み出す操作を行う。これにより、縦方向の位置情報は失うが、その代わりに時間情報を得 ることができる。時間分解能は加算列数によらず 8/1024 sec (8 ミリ秒)である。

図 2.2: XIS の概観 (The Suzaku Technical Description より)

2.2.5 硬 X 線検出器 (HXD)

HXD[5]は、10-700keVの広いエネルギー範囲の硬X線をこれまでにない高い感度で観測するこ とを目的とした検出器である(外観は図 2.3)。 高いエネルギーまで観測できる装置が衛星に搭載 されたのが日本が最初である。硬X線領域では、天体からの信号は典型的にエネルギーに対して べき関数的に減衰し、バックグラウンドに対して信号が微弱となる。よって高いエネルギーほど、 検出器におけるバックグラウンドの低減が精度のよい観測をするうえで不可欠である。バックグ ラウンドには検出器の正面から入射するもの、視野外からシールドを通過して入射してくるもの、 検出器に内在するものなどの成分がある。これらすべてを低減するようにもともと気球実験を通 じて開発されたのが井戸型フォスイッチカウンタであり、HXDではこの技術が応用されている。

図 2.3: HXD の概観 (The Suzaku Technical Description より)

2.3 スペクトルからわかること

2.3.1 スペクトルとは

プリズムを通して波長によって光を分けることを「分光」、分光して得られた虹を「スペクトル」 という。図 2.4 のように可視光をプリズムに通すと七色に分かれる。波長によってプリズムに入る 時、プリズムから出る時の曲がり角(屈折角)が異なるため、進む方向が変化する。

波長を横軸に、それぞれの色の光の強さ(明るさ)を縦軸にとると、図2.5のようなグラフを書 くことができる。このように、波長と光の強さの関係を示したものも「スペクトル」という。こ のようなスペクトルはプリズムで得られた虹のようではないが、虹でははっきりしない光の強さ が数値で与えられるので、より定量的に光の性質を示すことができる。なお、波長のかわりに振 動数(周波数)やエネルギーを横軸にとることもある。X線天文学ではエネルギーを横軸にする のが一般的である。図2.5では左にいくほど波長が短くなっている。

図 2.4: プリズムによる光の分光 http://www.astro.isas.jaxa.jp/xjapan/xrayintro/spectrum.html より

図 2.5: 波長と光の強さの関係を示すスペクトル http://www.astro.isas.jaxa.jp/xjapan/xrayintro/spectrum.html より

2.3.2 連続スペクトル

連続スペクトルは広いエネルギー帯域にわたって連続的に変化するスペクトルで、X線の発生 メカニズムによって大きく変わる。ある温度の物体がX線を放射している場合、その温度に対応す るX線よりエネルギーの高いX線はほとんど出ないので、連続スペクトルの形はあるエネルギー で折れ曲がる。これを模式的に表すと図2.6の赤線や青線のようになる。これに対して、熱的でな い現象からX線が出てくる場合、そのスペクトルは高いエネルギーまでずっとのび図2.6の黄線 のようになる。したがって、高いエネルギーを含む広いエネルギー範囲でX線を観測することに よって、X線の発生メカニズムを知ることが可能になる²。

2.3.3 線スペクトル

原子から出てくる光は元素ごとにエネルギーが決まっている。このように元素固有のX線を「特性X線」といい、そのスペクトルは線スペクトルとなる。酸素、硅素(シリコン)、鉄など宇宙に 豊富に存在する元素の主要な特性X線は0.5キロ電子ボルトから10キロ電子ボルトのX線領域に 存在している。線スペクトルには図2.7に示すように、でっぱっている場合(輝線)とへこんでい る場合(吸収線)があり、それぞれ原子から光が出てくる場合と原子に光が吸収される場合に対 応する。線スペクトルの強度は、元素の存在量や、温度・密度といった物理状態に強く依存し、ま た、原子が動いていればドップラー効果によってエネルギーがずれる。したがって、線スペクト ルを詳しく調べることによって、天体の物理状態や運動の様子が細かくわかる。

²http://www.astro.isas.jaxa.jp/xjapan/xrayintro/xrayspectrum.html

図 2.6:物質の温度と連続スペクトルの形を模式的に表した図 http://www.astro.isas.jaxa.jp/xjapan/xrayintro/xrayspectrum.html より

2.4 本研究で用いる X 線スペクトルモデル

ここでは超巨大ブラックホールの放射スペクトルを参考として、power-law モデル、星間吸収を かけたモデルを用いてフィッティングを行う。本研究の対象となるブラックホールから観測される X線スペクトルは以下のモデルで表すことが出来る。

2.4.1 ベキ関数モデル (power-law)

power-lawのスペクトルは以下の式(2.1)のようにベキ関数で表される。

$$A(E) = K E^{-\Gamma} \tag{2.1}$$

ここでの K は単位時間・単位エネルギー・単位面積あたりの放射光子数を示し、ベキ関数 Γ は photonindex(光子指数)を指す。なお Γ は無次元量であり、スペクトルを log-log スケールで取っ たときに傾きを示す。ブラックホール天体の law/hard 状態は power-law 型のスペクトルを示すこ とが知られている。図 2.8 は Γ = 1 の時の放射スペクトルを表している。

この図は log-log スケールで取られているので、Γの値はすなわちこのスペクトルの傾きとなっている。

2.4.2 星間吸収モデル (wabs)

天体から発生する X 線は観測衛星に届くまでに、その間で存在している星間ガスによって吸収 されている。wabs(星間吸収) モデルはその X 線がこの過程で受ける星間吸収を考慮しているモデ ルである。

$$A(E) = \exp(-N_H \times \sigma(E)) \tag{2.2}$$

上式はあるエネルギー E の X 線が吸収される確率を示したものである。この式の N_H は水素の柱 密度といい、 $N_H = n_H \cdot d$ で定義されている。 n_H は水素密度、d は吸収体の視線方向の厚さを示し ている。銀河系内で最も多い元素は水素であるが、実際には他の元素も含まれているので N_H は それらの元素の影響を考慮されて計算されている。また $\sigma(E)$ は星間吸収の断面積であり、主要元素の断面積をその組成比に合わせて重みをつけて足し合わせたものである。宇宙空間ではどんな 放射でも星間吸収は起こりえるのでこのモデルは全てのスペクトルフィッティングに用いられる。 図 2.9 に wabs*power-law モデルの放射スペクトルを示す。

 \boxtimes 2.9: wabs*power-law

図 2.9 は wabs*power-law モデルの放射スペクトルである。上から N_H のパラメータに 0.1 × 10^{22} 、1 × 10^{22} 、1 × 10^{22} [cm⁻²] を代入している (Γ =2.0)。power-law 単体の放射スペクトルと 比べると低エネルギー領域での吸収補正がかかり、 N_H が大きくなるほど補正が強くなりその分だ けスペクトルが落ち込んでいくことがわかる。

第3章 X線スペクトル解析の流れ

3.1 観測データ

3.1.1 データの種類

衛星から出力されるデータには、衛星の状態を知るためのデータ (House Keeping) と、検出器 からの観測データ (observation) との二種類がある。さらに、 衛星の姿勢を記述した姿勢データ と軌道データ、時刻データを加え、五種類のデータを扱うことになる。解析では、さらに検出器の 較正情報が必要となる。これは caldb (calibration database) と呼ばれ、検出器チームから供給さ れ、他の衛星の較正情報とあわせ、GSFC が管理している。これらは全て FITS format で配布さ れる。以下に、各データをまとめる。

• House Keeping Data

衛星共通系、HXD、XISで、それぞれ auxil/aeNNNNNNN.hk, hxd/hk/aeNNNNNNNN hxd_0.hk, xis/hk/aeNNNNNNNxis0_0.hk といった HK Fits が存在する。解析の便宜.hk や .ehk ファイルから必要な情報を一つの auxil/aeNNNNNNNNnkf というファイルにま とめている。したがって、解析では基本的に .mkf を使用すればよい (もし.mkf に解析に必 要な項目が含まれていない場合は、GSFC に依頼して追加する必要がある)。

• Observation data

観測データは hxd/event_uf/aeNNNNNNNNhxd_0 _wel _uf.evt, xis/event_uf/aeNNNNNN NNNxi[0-3]_0_3x3n030_ uf.evt,... というファイル名で配付される。 (XIS の 3x3030 部は マイクロコード)

- Attitude data 衛星の姿勢ファイル。auxil/aeNNNNNNN.att。
- Time data
 時刻データ。衛星搭載のデータレコーダに記録されたデータに時刻づけする際などに使用される。 auxil/aeNNNNNNN.tim。
- Orbital dat 衛星の軌道要素ファイル。auxil/aeNNNNNNNNN.orb
- Extended HK

姿勢ファイルや軌道要素ファイルを元に、衛星の向いている方向が時々刻々とどう変化したか、 また、衛星が飛翔している(地球上の)場所が観測に与える影響がどう変化したかなどを計算しまとめたファイルが Extended HK file, auxil/aeNNNNNNNN.ehk である。

• caldb

較正情報 FITS。calibration data base の略称。各検出器の較正情報が含まれている。検出 器の較正が進めば、あたらしい caldb がリリースされる。

3.1.2 データ形式 Fits とイベントファイル

「すざく」衛星は、公共天文台として機能している。国際的な競争力をつけるため、その観測デー タは、すべて天文業界標準の FITS(Flexible Image Transport System)型式に変換され、保存さ れる。最終的には、ISAS/JAXA の DARTS や共同研究機関である NASA/GSFC の HEASARC グループによって管理され、人類共通の知的財産として残される。いろいろなコラム毎の値を複 数の Row を詰めたテーブルに、そのデータの説明として、コラムの意味や、いろいろなキーワー ドの値を記述したヘッダ (ASCII) がついたファイルである。FITS ブラウザの例として fv を上げ る [2]。

fv¹は、FITS を GUI でインタラクティブに読み書きするためのツールで、Window でも起動可能 である。fv を起動し、FITS を読み込むと図 3.1 の様な window が開く。この、EVENTS Extension の部分が、イベント情報を格納しているものである。右の View の欄で "All"や" Select "を 選ぶと、図 3.2 のような表形式でデータを見ることができる。

File Edit	Tools							Help
Index	Extension	Туре	Dimension			View		
0	Primary	Image	44 X 43	Header	lma	age	1	Fable
□1	SPECTRUM	Binary	2 cols X 4096 rows	Header	Hist	Plot	All	Select
<u> </u>	GTI	Binary	2 cols X 14 rows	Header	Hist	Plot	All	Select
3	REG00101	Binary	6 cols X 1 rows	Header	Hist	Plot	Ali	Select

図 3.1: FITS の Summary 画面

File Edit	Tools							Help
		DETY	□ FOCX	FOCY	PHANOCTI	_ Pha	🗌 PI	
Select	11	11	11	11	11	11	11	
🗌 Ali	pixel	pixel	pixel	pixel	chan	chan	chan	
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	
1	485	641	744	908	411	430	420	
2	480	574	739	842	189	199	192	
3	520	620	779	887	696	683	705	
4	378	559	637	826	1278	1311	1286	
5	503	640	762	907	531	554	541	
6	475	581	734	848	230	242	235	
7	473	581	732	849	906	938	918	
8	386	541	645	809	323	336	327	
$\triangleleft _$								
Go to:		Edit cel	:					

図 3.2: イベントファイルの情報

¹http://heasarc.gsfc.nasa.gov/lheasoft/ftools/fv/

3.2 データリダクションとスペクトル作成

3.2.1 cleaned event

衛星から出力されるデータを全て含むデータは all event と呼び、天体を観測している時間帯の データだけでなく、地球を見ている時間帯、SAA 等観測の質が悪い時間帯のデータや、天体からの X線ではなく宇宙線由来のイベントなどが含まれている。これらの不要なデータを破棄したデー タを cleaned event という。cleaned event は、4 つの条件²でスクリーニングされている。最新の キャリブレーションでプロセスしたい場合や、異なるスクリーニング条件でプロセスしたい場合 などは、unscreened event から始めなければならない。

3.2.2 目的天体の X線イベントの抽出

目的天体の X 線のイベントを抽出するには xselect というソフトウェアを用いる。これは、イベ ントファイルに様々なフィルタをかけて、ライトカーブ・イメージ・スペクトルを抽出することが 主な目的である。イベントファイルを、xselect で読み込み ds9³で画像を表示する。ds9 で読み込 まれた画像から、region を指定することで目的天体の X 線イベントだけをを抽出することができ る。より質の良いイベントを得ることができ、較正用放射線源を削除しそこからライトカーブや、 スペクトルを得ることができる。

3.2.3 バックグラウンド領域のイベントの抽出

バックグラウンドは、長時間にわたる夜地球のデータベースから作成した Non X-ray Background (NXB) イベントファイルであり、通常観測データと同様に xselect 等でスペクトルを抽出するこ とが出来る。衛星が地球を見ている間は、Cosmic X-ray Background (CXB) も天体からの Signal もない Non X-ray Background (NXB) だけが検出される時間帯である。

3.2.4 その他のデータリダクション

デッドタイム補正

検出器には不感時間 (dead time) が存在する。よって、正確な X 線フラックスを見積もる ためには、これを補正する必要がある。HXD では、センサーからの信号でデータ操作をさ れるイベントとは別に、デッドタイム補正用に、エレクトロニクスで、 周期的に擬似イベ ント (pseudo event) を発生させている。この擬似イベントは、 実際の信号による不感時間 中にデータ操作された場合、テレメトリにでてこないので、発生させたであろうイベント数 と、実際にテレメトリにでたイベント数との比を取る事で、その観測で不感時間が占める割 り合いを算出している。デッドタイム補正用のツールでは、この不感時間の割り合いに応じ て PI file の Exposure を書き変えている。補正ツール hxddtcor を、観測 PI file 毎にかけ る。 PIN Background に関しては、たいていは dead time 補正されたデータベースである。 したがって、dead time 補正は行なわないことが多い。

 $^{^{2}}http://www.astro.isas.ac.jp/suzaku/process/v2changes/criteria_xis.html$

³http://cosmic.riken.jp/suzaku/help/guide/fstep_web/node6.html

PIN バックグラウンドの積分時間補正
 PIN のバックグラウンドファイルに関して統計負けしないように、 10 倍の flux でイベン
 トファイルを作成している。そのため、出来た BGD の PI file の Exposure を 10 倍して、
 BGD の flux を 0.1 倍にしないといけない。

3.3 応答関数の作成

天体やバックグラウンドなどの実際に放射されているはずのスペクトルを観測されたデータを より再現するためには観測した望遠鏡や検出器によるスペクトルの変化を応答関数を用いて考慮 しなければならない。応答関数はARF(=Ancillary Region File) とRMF(=RedistributionMatrix File) の2種類があり、ARF は検出器の有効面積を表すベクトルを、RMF は量子効率やチャンネル P をエネルギーE に変換する行列を含んでいる。ARF の関数をA(E)、RMF の関数をR(P; E)、 入射エネルギースペクトルモデルをK(E) とすると実際に得られるスペクトル Smo(P) は

$$Smo(P) = \int R(P; E)A(E)K(E)dE$$
(3.1)

と表せる。

3.3.1 RMF ファイル

XISのエネルギー分解能、gain などは、観測時間 · 観測モード · CCD 上のイベントの位置によっ て異なる。そのため、XIS の channel 波高値 (PHA) とエネルギー (E) との対応付けが必要となっ てくる。その対応付けを行っているのが RMF ファイルである。エネルギーの再分配行列ファイル で関数 K(P;E) は行列の形を表しており、channel をエネルギーに変換している。

3.3.2 ARF ファイル

有効面積を表すレスポンスファイルである。ARF ファイルの関数 A(E) はベクトルの形で表さ れており、エネルギーの関数として検出器の量子効率だけでなく、HRMA の有効面積も含んでい る。また、観測したい点源の位置や、取り出す領域のサイズによって異なり、一つ一つの PI ファ イルに対応したファイルを用意しなければならない。エネルギースペクトルをこの ARF ファイル で補正することで、天体本来のスペクトルを得ることが出来る。

図 3.3: arf ファイル

3.4 xspec によるスペクトル解析

xspec では通常 ²検定を用いてフィッティングを行う。ここで、チャンネルあたりのデータの 標準偏差 σ ポアソン統計に基づいて $\sqrt{N}(\bar{N}$ はチャンネルのカウント数の期待値) に従うが、デー タにつくエラーは観測されたカウント N に基づいて \sqrt{N} としている。フィットは $\sqrt{N} \approx \sqrt{N}$ の仮 定のもとに行われるが、 実際には N が小さくなると、この仮定が崩れ不定性が大きくなる。 \sqrt{N} $\approx \sqrt{N}$ の仮定が妥当性を持つのは N>10 程度であり、これが保たれるようにビンまとめする。だ いたい N>20 くらいでビンまとめしているのが普通のようであるが、 バックグラウンドなどを考 慮して最適なビンまとめをする。

xspec ではまずデータの読み込みを行う。ここでは、パルスハイト情報を含んでいる pha ファイルを用いる。その後、検出器の適切な rmf ファイルや arf ファイルを掛けることでスペクトルを表すことが出来る。

第4章 教材の作成

4.1 教材の目標と方針

4.1.1 教材の到達目標

解析を行うには、xselect、xspec という解析ツールを用いる。しかし、解析はそのツールによっ てデータリダクションや応答関数を考慮したスペクトルの抽出を自動的に行う。そのため解析を 行って間もない大学生や大学院生には、内部的にどのようなことを行っているのか理解し難い点 がある。そこで、今回の教材ではスペクトル抽出の際に行うデータリダクションや応答関数の役 割についての理解を目標とする。

4.1.2 実習に用いるソフトウェアと方針

計算によってスペクトル抽出を行っていくため、汎用ツールであるエクセルを用いることとした。天体のデータをあらかじめ用意し、そのデータを用いて解析ツールで実際に行っているデー タリダクションや、スペクトル抽出を自分の手で計算することで、データリダクションや応答関 数についての理解を深めていくこととする。

4.1.3 実習用データファイルと解説書の仕様

イベントファイルをエクセル化するにあたり、エクセルを用いることでヘッダーとデータを別 シートとして用意する。エクセルではイベントファイルの中から必要な情報のみ取り出したもの を用意する。ヘッダー部に載せる情報は天体のX座標、Y座標、エネルギー情報のみを取り出し たデータである。このデータを用いて、スペクトルの抽出を行っていく。この教材を扱う実習者 には、解説書を見ながらスペクトル抽出を行ってもらう。この解説書はインターネット上で見ら れるようにし、データリダクションの行い方、パルスハイトスペクトルの抽出法、エネルギース ペクトルへの変換の仕方、天体本来のスペクトルの抽出法といった4部構成となっている。それ ぞれ重要なポイントは、解説書に説明を加えている。

4.2 教材とする天体の選定

4.2.1 教材に使用する天体の条件

データリダクションやスペクトルはその天体ごとに違った形で表示される。そこで、実際に解 析を行うことで教材として使用する天体の条件の洗い出しを行った。

• 条件 1:標準的な観測モードが用いられている

● 条件 2:得られたスペクトルが単純なベキ関数で表されること

条件1はデータリダクションの理解である。標準的な観測のイメージは正方形で表示される。デー タリダクションすることで天体そのものを解析することができるため、標準的な撮影が適してい るといえる。条件2は応答関数の理解である。X線スペクトルがベキ関数に星間吸収をかけたモ デルできれいに表されることで、特にARFファイルの働きについて理解することができる。

4.2.2 活動銀河中心核 (AGN)

銀河と言えば、単なる星の集合体だと思われる。しかし、ほんのわずかな割合であるが、銀河 の中心が銀河全体の1%くらいから1万倍と非常に明るく輝いている銀河が存在する。その想像 を絶するほどの莫大なエネルギーを放出している銀河中心を活動銀河核という。活動銀河核には 1型と2型があり、1型では活動銀河核のまわりには中心からの強い電磁波で高い電離状態になっ たガスが存在し、色々な輝線を放出する。ガスの速度として毎秒1万kmに相当する幅の輝線を放 出するものも多い。見方により、1型活動銀河核と2型活動銀河核に分けることが出来、平行から 見たもの2型活動銀河核、垂直から見たものを1型活動銀河核と分類することが出来る[7]。

4.2.3 5つの活動銀河核の画像とスペクトルの作成

実際に行った解析結果である。図 4.1 から図 4.15 に天体の画像と解析を行ったスペクトルを示す。円で囲んだ箇所は天体本来の情報である。天体本来見るため図 4.1~図 4.4 のように端にある 較正用放射源は天体本来の情報でないので消去する [8]。

図 4.1: 3C273 イメージ

図 4.2: 3C120 イメージ

図 4.3: MCG6-30-15 イメージ

図 4.4: NGC4051 イメージ

図 4.5: cenA イメージ

図 4.6: 3C273 エネルギースペクトル

図 4.7: 3C120 エネルギースペクトル

図 4.8: MCG6-30-15 エネルギースペクトル

図 4.9: NGC4051 エネルギースペクトル

図 4.10: cenA エネルギースペクトル

図 4.11: 3C273 天体本来からのスペクトル

図 4.12: 3C120 天体本来からのスペクトル

図 4.13: MCG6-30-15 天体本来からのスペクトル 図 4.14: NGC4051 天体本来からのスペクトル

図 4.15: cenA 天体本来からのスペクトル

4.2.4 5 つの活動銀河核のスペクトルモデル

スペクトル解析では、いくつかのパラメータを持つモデルスペクトルを応答関数や BGD を通して、実際に得られるはずのスペクトル *S_{mo}(P)* に直して解析データのスペクトルと比較することで、モデルの妥当性を ² 検定を用いて行うことである。この時の ² 値は下式 (4.1) で表す。

$${}^{2} = \sum_{P} \left(\frac{S_{obs}(P) - S_{mo}(P)}{\sigma_{P}}\right)^{2}$$
(4.1)

P はチャンネル、 $S_{obs}(P)$ は観測されたスペクトルから BGD を差し引いたもの、 $S_{mo}(P)$ はモデ ルの期待値、 σ は S_{obs} の誤差を示している。 σ_P は統計誤差 $\sigma_{sossion}$ と系統誤差 σ_{sus} を用いて

$$\sigma_P = \sqrt{\sigma_{possion}^2 + \sigma_{sys}^2} \tag{4.2}$$

と表される。また式 (4.2) の ² 値を自由度で割った値 reduced ² がモデルフィットにおいて注 視すべき値となり、これが1に近い値を取るようにすることが、モデルがデータをよく再現して いる、ということを示すことになる。1 より大きければモデルがデータを再現できていないこと を意味し、逆に1よりはるかに小さい場合はモデルのパラメータが多すぎる、または誤差が大き すぎるということを示している。表 4.1 にベストフィットパラメータ、図 4.16~図 4.20 に実際行っ たフィッティング結果を示す。

天体	N_H	Γ	norm	$^{2}/d.o.f$
3C273	0.166653	$1,\!65188$	1.4746×10^{-2}	3.901905
3C120	0.182766	1.82876	1.07753×10^{-2}	1.66380
MCG6-30-15	1.02687×10^{-21}	1.62649	7.37730×10^{-3}	2.31254
NGC4051	8.61453×10^{-3}	1.53349	1.12953×10^{-3}	2.22464
cenA	9.19508	1.54578	6.75464×10^{-2}	5.025904

表 4.1: wabs*power-law のベストフィットパラメータ

 \boxtimes 4.16: 3C273 wabs*power-law

 \boxtimes 4.17: 3C120 wabs*power-law

 \boxtimes 4.18: MCG6-30-15 wabs*power-law

 \boxtimes 4.19: NGC4051 wabs*power-law

☑ 4.20: cenA wabs*power-law

4.2.5 教材用天体の決定

§4.2.3 と§4.2.4 から教材とする天体を決定した。条件1として当てはまる天体は3C120、MCG6-30-15 である。その他の天体に関しては、天体が明るすぎてしまったり標準的な観測モードで撮影 出来ていないため、不適切であるということでこの2つの天体が条件に合っている。条件2 に適 していることを調べるため、モデルフィッテングを行った。よりモデルがデータを再現出来てい る天体が、単純なスペクトルであるということがいえる。モデルがデータを再現出来ているとい うことは、1 に近いということであるので3C273、3C120 が再現出来ているということがいえる。 よって、教材として使用する天体は3C120 とした。

4.3 実際の教材作成と実習の流れ

4.3.1 実習用観測データのエクセル化

§4.1.3 で決めた仕様に基づいて、エクセルファイルを作成した。ここには、天体の X 座標、Y 座標、エネルギー情報を示してある。スペクトルを作成する際、ヒストグラムを使用する。そのため channel として、あらかじめ 1 ~ 4000 まで用意している。図 4.21 にエクセルでのデータを示す。

\diamond	Α	В	С	D
1	DETX	DETY	PI	データ区間
2	578	443	1624	1
3	522	463	1061	2
4	534	484	525	3
5	628	587	531	4
6	580	596	833	5
7	578	608	1147	6
8	403	463	208	7
9	497	478	1749	8
10	442	482	2264	9
11	505	501	1847	10
12	465	501	295	11
13	410	515	345	12
14	504	516	355	13
15	473	519	341	14
16	503	520	399	15
17	499	527	325	16

図 4.21: エクセル上でのイベントファイル

4.3.2 データリダクションの実習

まず実習者にはデータリダクションを行ってもらう。図 4.22 は、リダクションを行う前のエク セル上のイメージ図である。この図からデータリダクションを行うために、X 座標、Y 座標の中心 点を求める。イベントファイル上の DETX、DETY 列を用いてヒストグラムを作成する。ヒスト グラムを作成するのは、光が一番集まっている点を中心点とするためである。つまり、求めたヒス トグラムの頂点のデータ区間 (X 軸) が X 座標、Y 座標の中心点となる。点の集まりが多いほどそ の天体の光が強いということになる。図 4.23、図 4.24 に X 座標、Y 座標のヒストグラムを示す。

この結果から実習者は、X 座標 515、Y 座標は 503 を中心として円形に天体のイベントを取得で きることを理解する。中心点を求めたら、円型に切り取る作業を行っていく。半径を 170 として 円の中にどのくらい光の個数があるか求めていく。光の有無については、IF 関数を用いる。範囲 内に、光があれば「1」とし、光が無ければ「0」で表す。元のデータ DETX、DETY、PI と、IF 関数で求めた値を掛けることによってリダクションされた値が出てくる。図 4.25 にエクセル上で リダクションされた値と図 4.26 に円型に切り取った図を示す。これで、リダクションの行い方を 理解していく。

図 4.22: リダクション前

図 4.23: X 座標ヒストグラム

図 4.24: Y 座標ヒストグラム

E		F	G	Н
		#VALUE!	#VALUE!	
0		0	0	0
	1	849	729	406
	1	842	698	377
	1	866	705	256
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0
	1	655	777	1112
	1	706	761	420

図 4.25: エクセル上でのリダクション

図 4.26: リダクション後

4.4 スペクトル抽出の実習

データリダクションを行った値から、天体本来のスペクトルを抽出する。スペクトルを抽出して いく中で、rmfやarfといった応答関数の働きを計算によって実感してもらえる教材を作成する。 データリダクション行った値を用いて天体本来からのスペクトルを抽出していく。

4.4.1 パルスハイトスペクトル

検出器に X 線が入射すると、X 線のエネルギーに応じた個数の電子群が生成される。生成した 電子群を電圧信号に変換し、この電圧値を測定することで入射 X 線のエネルギーを決定する。実 際の観測では電圧値はアナログデジタルコンバータでデジタル信号に変換され、一つ一つの X 線 に対する波高値 (channel) が決まる。一定時間観測することで波高値の頻度分布を得ることがで き、実際の強度を知るためには 1 秒あたりに規格した頻度分布が必要となりそれがパルスハイト スペクトルとなる。横軸 channel、縦軸 count/sec channel のスペクトルとなる。図 4.27 にデータ リダクションを行う前のパルスハイトスペクトル、図 4.28 にリダクション後のパルスハイトスペ クトルを表示する。

図 4.27: リダクション前

図 4.28: **リダクション**後

4.4.2 パルスハイトスペクトル抽出の実習

まずデータリダクション行った値からパルスハイトスペクトルを抽出する。パルスハイトスペ クトルは、横軸 channel。縦軸 1 秒間に channel ごとに光った回数の値のグラフである (count/sec channel)。イベントファイル 上の PI(Pulse Invariant) は光の強さを表しており、データリダクショ ンを行った値の PI をエクセル上の分析ツールを用いてヒストグラムとし頻度を調べていく。図 4.29 にヒストグラムを表示する。

このヒストグラムは各 channel ごとで検出した光の個数を表したグラフである。つまり光の強さ を表している。このヒストグラムの頻度の値を観測時間ごとに何個検出したかを表すために観測 時間 (exposure) で割る。これから、横軸検出器の channel、縦軸1秒間に観測された光の電気信 号のパルスハイトスペクトルが抽出することが出来る。実習者には、パルスハイトスペクトルの 抽出をヒストグラムを用いることで channel ごとに X 線の光の頻度数を測っていることを実感し てもらう。図 4.30 に抽出したパルスハイトスペクトルを示す。

図 4.29: ヒストグラム

図 4.30: パルスハイトスペクトル

4.4.3 エネルギースペクトル

パルスハイトスペクトルは、検出器の channel ごとの電気信号の値であった。このパルスハイトスペクトルの channel をエネルギーに変換するために rmf file が用いられる。rmf file では、電気信号で表された channel を天体から出されている X 線の強さであるエネルギー (keV) へ変換を行う。横軸 Energy(keV) 縦軸 count / second keV のスペクトルを得ることができる。

4.4.4 エネルギースペクトルへの変換手順

パルスハイトスペクトルからエネルギースペクトルを抽出する。エネルギースペクトルは横軸 検出器で測定できる X 線の強さ。縦軸 1 秒間に観測された光の個数を検出器のエネルギーで表し たスペクトルである。RMF ファイルを用いることで channel とエネルギーの対応付けが必要と なってくる。RMF ファイルによって、1000ch では 3.65keV。2000ch では、7.30keV。3000ch で は、10.95keV という対応となっている。

これにより、エネルギー (E) は

$$E = channel \times 0.00365 \tag{4.3}$$

と表すことができるというのがわかる。先ほど求めたパルスハイトスペクトルの横軸の値を0.00365 × channel、パルスハイトスペクトルの縦軸の値÷0.00365で求めることができる。この二つの値 を、散布図としてエネルギースペクトルのグラフとする。図4.31にエネルギースペクトルを示す。

図 4.31: エネルギースペクトル

4.4.5 天体本来のスペクトルの抽出手順

エネルギースペクトルの抽出ができたが、検出器が観測したエネルギーは観測したそれぞれの channelの面積によって異なるため補正する必要がある。それを考慮するのが ARF ファイルであ る。この ARF ファイルは面積 × 効率の面積効率を示しており低エネルギー側、高エネルギー側 では有効面積が小さくなっていることがわかる。図 4.32 に ARF ファイルを示す。

図 4.32: 有効面積のエネルギー依存性

この ARF ファイルを使うことでエネルギースペクトルを補正することができる。具体的には、 横軸エネルギー (keV)、縦軸 (cm2 / s keV)1 秒間に観測された X 線の強さ÷有効面積で求めるこ とができる。図 4.33 に天体本来からのスペクトルを示す。

図 4.33: 天体本来からのスペクトル

第5章 教材の評価と効果の検証

5.1 教材の評価

5.1.1 評価の仕方

実際に作成した教材を、解析が行ったことがない学生に使ってもらい実習を行う。実習後、理 解出来た点と、理解出来なかった点を聞き教材のさらなる改善を行っていく。評価のポイントに ついては以下に示す。

- 実習者が、エクセル上で天体本来からのスペクトルを抽出することが出来る
- データリダクションの行い方と作業内容の理解
- 天体本来のスペクトルを抽出していく上での応答関数の役割

5.1.2 実習と改善点の洗い出し

学部3年生を対象として実習を行った。研究者が実際に行っている解析の行い方を説明した後、 作成した教材の手順に従ってエクセル上でスペクトルの抽出を行ってもらった。作業で行き詰まっ ている点があれば教えていく形式とし、実習者は最後まで作業を行う。その結果、実習者全員、天 体本来からのスペクトルを抽出することができた。教えるよりも先に、手順通りに作業を行う実 習者もいたので作業については問題ないと感じた。データリダクションについても、IF 関数を用 いて光の有無を調べ、不必要なデータの削除を行っていくという作業を理解してもらえた。しか し、実習者に感想を伺った所以下の改善点が見つかった。

- channel の説明
- エネルギー (keV) の変換手順
- arf file の詳しい説明
- 最終的にスペクトル解析によって何がわかるのか

これらの改善点を加え、教材の改善を行った。

5.1.3 教材効果の期待

上に記した改善点を加えたことでスペクトル解析についてより詳しい内容とすることが出来た。 解析の手順について説明し、実習を行った結果「教材を見て教えてくれる人がいればスペクトル 抽出はそれほど困難ではなかった。」という実習者の感想があった。評価のポイントである、エク セル上で天体本来のスペクトルを抽出できたことが確認できた。よって、この教材を使うことで 解析を行ったことが無い人でもデータ解析の疑似体験をすることが出来た。このことから、これ から解析を行っていく人にデータリダクションや応答関数について理解補助に繋がっていくと期 待出来る。

第6章 まとめ

6.1 本研究の成果

実際に解析を行い、データリダクションや応答関数について疑問に思いその理解に努めた。そ こで、この二つを疑似体験出来るような教材が必要ではないかと思い教材の作成を行っていくこ ととした。5つの超巨大ブラックホールについて解析を行い教材として扱う天体のデータを決定し た。エクセルの分析ツールを用いて、スペクトルを抽出し天文学者が行うデータ解析の疑似体験 が出来る教材の作成を行った。解析を行ったことがない学生を対象としてデータ解析学習教材を 実際に使用してもらいデータリダクションや応答関数について、実際に計算を行うことでその働 きの理解を目指した。実習者から感想を聞き良かった点や改善点を洗い出し、改善を行った結果、 より深くデータリダクションや応答関数について理解出来る教材となった。

6.2 課題と今後の展望

課題としては、スペクトル抽出を行うまでの作業が長いという点、実習での応答関数の理解が 不十分であった点である。しかし、実習により解析を行ったことの無い学生が、教材を見ながら スペクトルを抽出することを確認出来た。また、応答関数についてより詳しい説明を加えたこと でより良い教材となった。今後、解析の初心者にこの教材を使用してもらいデータリダクション や応答関数の役割についての理解補助に役立ててもらいたい。

付録A

A.1 データ解析学習教材

実際に作成した教材を付録として載せる¹。

図 A.1: 教材の web サイト

¹http://www.cygnus.se.shibaura-it.ac.jp/shibaura/thesis/index.html からリンクを貼る予定

A.2 スペクトル解析の準備

図 A.2: 教材の web サイト (解析準備)

A.3 データリダクション

図 A.3: 教材の web サイト (データリダクション)

A.4 パルスハイトスペクトルの抽出

図 A.4: 教材の web サイト (パルスハイトスペクトル)

A.5 エネルギースペクトルの抽出

図 A.5: 教材の web サイト (エネルギースペクトル)

A.6 天体本来からのスペクトルの抽出

図 A.6: 教材の web サイト (天体本来からのスペクトル)

関連図書

- [1] Sato K.et al.2008, PASJ, vol60, ppS333-S342
- [2] すざくヘルプ編「すざく解析マニュアル」
- [3] Mori,H.et al.HEAD 2006 The XRT onboard Suzaku
- [4] Koyama, K.et al.PASJ 2006 X-ray Imaging Spectrometers(XIS) on Broad Suzaku
- [5] Takahashi, T.et al. PASJ 2007 Hard X-Ray Detector (HXD) on Board Suzaku
- [6] 長瀬 文昭. 日本の X 線天文学の歩み http://www.darts.isas.jaxa.jp/classroom/app/index.html
- [7] 小山勝二.X線で探る宇宙. 培風館
- [8] 小林隼人 卒業論文 (芝浦工業大学)2009

表目次

2.1	すざくの特徴 [1]	3
2.2	「すざく」に搭載されている観測機器[2]	5
4.1	wabs*power-law のベストフィットパラメータ	24

2.1	すざくの概観 [1]	ŧ
2.2	XIS の概観 (The Suzaku Technical Description より) $\ldots \ldots \ldots$;
2.3	HXD の概観 (The Suzaku Technical Description より) $\ldots \ldots \ldots \ldots \ldots $ 7	7
2.4	プリズムによる光の分光 8	3
2.5	波長と光の強さの関係を示すスペクトル)
2.6	物質の温度と連続スペクトルの形を模式的に表した図)
2.7	連続スペクトルと線スペクトル 10)
2.8	power-law	L
2.9	wabs*power-law $\ldots \ldots 12$	2
0.1		
3.1	FTTSのSummary 画面	È
3.2	イベントファイルの情報 14	Ė
3.3	arf ファイル	,
4.1	3C273イメージ)
4.2	3C120イメージ)
4.3	MCG6-30-15 イメージ)
4.4	NGC4051 イメージ)
4.5	cenA イメージ)
4.6	3C273 エネルギースペクトル	L
4.7	3C120 エネルギースペクトル 21	L
4.8	MCG6-30-15 エネルギースペクトル	L
4.9	NGC4051 エネルギースペクトル 21	L
4.10	cenA エネルギースペクトル 22)
4.11	3C273 天体本来からのスペクトル 22)
4.12	3C120 天体本来からのスペクトル 22	2
4.13	MCG6-30-15 天体本来からのスペクトル	3
4.14	NGC4051 天体本来からのスペクトル	3
4.15	cenA 天体本来からのスペクトル	3
4.16	3C273 wabs*power-law	ŧ
4.17	$3C120 \text{ wabs*power-law} \dots 24$	ŧ
4.18	MCG6-30-15 wabs*power-law	ś
4.19	NGC4051 wabs*power-law	ś
4.20	cenA wabs*power-law 25	ś
4.21	エクセル上でのイベントファイル 27	7
4.22	リダクション前	3
4.23	X 座標ヒストグラム	3
4.24	Y 座標ヒストグラム	3

4.25	エクセル上でのリダクション..............................	29
4.26	リダクション後	29
4.27	リダクション前	30
4.28	リダクション後	30
4.29	ヒストグラム	31
4.30	パルスハイトスペクトル	31
4.31	エネルギースペクトル	32
4.32	有効面積のエネルギー依存性.................................	33
4.33	天体本来からのスペクトル.................................	33
A.1	教材の web サイト	36
A.2	教材の web サイト (解析準備)	37
A.3	教材の web サイト (データリダクション)	38
A.4	教材の web サイト (パルスハイトスペクトル)	39
A.5	教材の web サイト (エネルギースペクトル)	40
A.6	教材の web サイト (天体本来からのスペクトル)	41