X線天文衛星「すざく」のデータを用いたブラックホール学習教材の作成

Making and verification of learning material for x-ray observation of stellar black holes

宇宙情報解析研究室: P08144-0 山上秀典

指導教員: 久保田 あや 准教授

1 ブラックホールとX線放射

ブラックホール(BH)とは非常に強い重力を持ち、その内部の物質や光はある範囲内から外に出ることができない。この範囲の半径をシュバルツシルト半径 *R_s*といい、 万有引力定数 *G*、BH の質量 *M*、光速 *c*を用いて以下の式で表される。

$$R_s = \frac{2GM}{c^2} \tag{1}$$

BH が単独で存在する場合、その姿を観測する事は難し いが、図1の様にBHと光学主星とが近接連星系をなす場 合、光学主星からのガスはBHの強い重力に引かれ、BH のまわりをケプラー運動しながら落ち込んでいく。このよ うにして形成されるガス円盤を「降着円盤」と呼ぶ。光学 主星からのガスが降着円盤を介してBHに落ち込むとき に、摩擦により数千万度の高温に熱せられ強いX線が放 射される。このX線を観測することにより、BHを間接的 に知ることができる。

図 2 は Cygnus X-1 の X 線スペクトルである。BH にガ スが大量に落ちているときには、明るい軟 X 線放射とベキ 関数型の硬 X 線放射を特徴とする。この軟 X 線は BH 周 辺の標準降着円盤 [1] を近似した多温度黒体放射 (diskbb モデル [2]) でよく再現できる。これは円盤が BH からの距 離 r において局所温度 $T(r) = T_{in}(r/r_{in})^{-3/4}$ の温度で黒 体放射するとした放射モデルであり、スペクトルから円盤 の最も内側の温度 T_{in} とその半径 r_{in} が得られる。

図 1: ブラックホールと伴星 図 2: Cygnus X-1 のスペク (提供: JAXA) トル (Cui et al.(1997) より)

2 研究の目的

BHと降着円盤のイメージ図を図3に載せる。また $T_{\rm in}$ は降着円盤の最内縁温度、 $R_{\rm in}$ は降着円盤の最内縁半径で ある。一般相対性理論から、BHの周りの安定なケプラー 軌道には最終安定軌道とよばれる下限があり、シュバルツ シルト半径 R_s の3倍より内側では安定な軌道が存在せず、 物質はBHに落ち込んで行く。したがって、観測から得ら れる円盤の内縁半径 $r_{\rm in}$ はBHの最終安定軌道に一致して いると考えられる。X線観測から $T_{\rm in}$ やX線の放射強度F が分かり、これからBHの半径や質量が分かる。本研究の

3 「すざく」によるLMC X-3の観測

「すざく」は日本で5番目のX線天文衛星でX線CCD カメラ (XIS)[3]、硬X線検出器 (HXD)[4] が搭載されてお り、今までの衛星に比べて非常に広いのエネルギー領域 で観測ができる [5]。本研究で解析を行う LMC X-3 は大 マゼラン星雲にある恒星質量 BH で光学観測の結果から、 距離は約 18 万光年、質量が 5.0-7.2M_☉ (太陽質量 M_☉ = 2.0×10^{30} kg)、軌道傾斜角が 64°-70°と推定されている [6]。LMC X-3 はすざく衛星により 2008 年 12 月 22 日と 2009 年 12 月 21 日の 2 回観測が行われている。

4 データ解析と教材用データの選定

教材に最適なスペクトルデータを選ぶために LMC X-3 の 2008 年、2009 年、2つのデータを解析した。まず、す ざく衛星によって得られた LMC X-3 のデータから X 線 データ解析ソフトである XSELECT[5] を使用してスペク トルを抽出した。次に XSPEC という X 線スペクトル解 析ソフト [5] を使用して観測機器の状態によるスペクトル の変化を考慮するために作った応答関数をスペクトルに適 用する。図 4、5 は抽出したスペクトルを降着円盤からの 放射である diskbb モデルに、円盤の周りの高温コロナか らの放射を模擬するベキ関数 (power-law) モデルで再現し た結果を示している。

図 4: LMC X-3 のスペクト 図 5: LMC X-3 のスペクト ル (2008 年) ル (2009 年)

解析結果から、2008年、2009年の χ^2/dof は1955/1775、 1811/1666となり、どちらもモデルがデータを再現出来る ことが分かった。power-law 成分に注目すると、2009年の ほうが power-law 成分が少ない。つまりこのデータは円盤 からの放射のみを考えればいいということなので、教材に 使用する際に理解がしやすい。よって教材では 2009年の データを使用することにした。

教材の作成 5

教材用のデータ作成 5.1

図6はLMC X-3のスペクトルデータを gnuplot で表示 したものである。したがって、本教材では、高校物理の範 囲で扱っており、比較的身近な波長λ [m] や周波数 ν [Hz] を用いることとした。エネルギー E と周波数 v および波 長 λ の関係は、プランク定数 h と光速 c を用いて式 (2)(3) で与えられる。また周波数あたりの放射強度 F(ν) と波長 あたりの放射強度 $F(\lambda)$ の関係は微小周波数 $d\nu$ および微 小波長 dλ に含まれる光子数が等しいという関係から、式 (4)を用いて変換できる。

変換した周波数スペクトルを図7に、波長スペクトルを 図8に示す。両者を見比べると、波長スペクトルにはピー クが見える。これは教材でデータと降着円盤からの放射を 見比べるときに比べやすい。よって今回の教材では波長の データを使用することにした。

5.2教材の流れ

5.2.1 ブラックホールの理解

まずは星がどのように誕生し、どんな進化をたどるかを 理解する。そしてどんな経過を辿ってブラックホールがで きるか、どんな種類があるかを知る。その中で本当は見え ないはずのブラックホールをどのようにして観測している かを降着円盤の説明をしながら理解し、ブラックホールの 半径や質量はどのようにして求められるかなどを学ぶ。

降着円盤からの放射について 5.2.2

次に黒体放射について学び、降着円盤からの放射との関 係を理解する。そして降着円盤からの放射スペクトル の特 徴として半径が同じで温度が変わるとスペクトルが左右に 移動することや逆に温度が同じで半径が変わると横軸はそ のままで縦に移動することを図などを見ながら理解する。

5.2.3 実習

実習教材には図9のような様々な内縁温度に対する標 準降着円盤からの放射スペクトルモデルを与える。ここで は天体までの距離を18万光年、傾斜角を66°とした。ま た最内縁半径は 10km の場合を示してある。図 8 と、図 9を見比べて温度が一致していれば横軸は変わらないので 形が合うはずである。実習者は、データにおいて放射強 度が最大となる波長に注目し、形が一致するスペクトル、 すなわち最大光度となる波長が同じスペクトルを図9か ら見つけ、最内縁温度を自ら決定する。次に、降着円盤 が出す光の量は最内縁半径の2乗に比例するので光の量 が X 倍なら半径は \sqrt{X} 倍になる。実習者はデータと温度 が一致したスペクトルを求めた後、図の縦軸よりデータ はモデルの何倍になっているかを計算し、半径を求める。

その後、実際のフラック スの値より、式(2)から 半径を求め、見た目から 求めた値と一致すること を確認する。そして以上 で求めた半径からブラッ クホールの半径や質量を 求める。

図 9: 降着円盤からの放 射

教材の評価と改善点 6

今回は学部3年生を対象に教材を使用してもらった。ま ずブラックホールの理解においてはよい評価が得られ、観 測するまでの流れはすぐに理解してもらうことができた。 しかし黒体放射やスペクトルについては難しいと言うこと だった特に降着円盤からの放射が黒体放射の重ね合わせ で 考えられるというところが理解しにくいという感想をうけ た。最終的にすべて理解してもらえたが時間がかかってし まったため、より分かりやすいよう図や文書による説明も 増やす必要があることが分かった。スペクトルは単に口頭 での説明が多かったので文章でも説明を詳しく行う。他に もスペクトル以外にも図を使用する際はより詳細に説明す る必要があると思った。

まとめ 7

実習者から良かった点や改善点を洗い出し、改善した結 果、よりブラックホールや降着円盤、黒体放射について理 解できる教材となった。今後、宇宙に興味をもち始めた人 に対して、教材を使用してもらい、ブラックホールや降着 円盤について理解を深めてもらいたい。そして宇宙に興味 をもつ人が増えるように役立ててもらいたい。

参考文献

- Shakura, Sunyaev. 1973, A&A, 24, 337
- Mitsuda, K., et al. 1984, PASJ, 36, 741)
- 3
- Koyama, K. et al. 2007, PASJ, 59, 23 Takahashi, T. et al. 2007, PASJ, 59, 35 すざくヘルプ編「『すざく』ファーストステップガイド」 [5] $(http://cosmic.riken.jp/suzaku/help/guide/index_j.html)$
- [6] Kuiper, L., van Paradijs, J., & van der Klis, M. 1988, A&A, 203, 79