国際宇宙ステーション搭載 NICER による 連星系ブラックホール Cygnus X-1の研究

study of Black Hole Binary Cygnus X-1 with NICER

X線天文学研究室 BP17029 金子 拓輝 指導教員:久保田 あや 教授

1 背景と目的

恒星の内部では、核融合反応によって絶えずエネルギー を生成している。そして大質量の恒星は、核融合反応の最 終段階で自分自身の重力でつぶれてしまい、超新星爆発を 起こす。その結果、特に太陽質量の 30 倍以上の恒星は中 心に向かって収縮し、物質や光さえも脱出することができ ない天体となる。これがブラックホールである [1]。ブラッ クホールは単独では光を放たないため観測できないが、通 常の恒星と近接連星系を形成していると、恒星のガスがブ ラックホールに吸い込まれることで観測できる。また、恒 星からブラックホールに流れ込むガスは、降着円盤と呼ば れる平らな円盤状のガス流をつくり、回転しながらブラッ クホールに落ちていく。降着円盤は、ブラックホールに近 い内側ほど摩擦で温度が高くなり、X 線が放出される。本 研究は、国際宇宙ステーションに搭載された中性子星観測 装置 NICER で観測された CygX-1 のデータを用いて、こ の天体の降着円盤の構造を探る。

2 連星系ブラックホール Cygnus X-1

Cygnus X-1 は、地球から 7.5×10^{16} km の距離に存在す る天体であり、青色超巨星(HDE 226868)と X 線星から なる連星系である [2]。この X 線星の質量は $21.2 \pm 2.2 M_{\odot}$ (M_☉ は太陽質量)と推定されている [3]。これは、中性子星 の質量の理論的最大値である $3.6 M_{\odot}$ [4, 5]をはるかに超え おり、現在知られている銀河系内のブラックホール連星の 中で、最も重いブラックホールである。また Cyg X-1 は、 high_soft 状態と low_hard 状態の 2 つの状態をもっているこ とと、X 線強度が非常に速いかつ不規則な時間変動をして いることがわかっており [7]、このような特徴から、Cygnus X-1 はブラックホール候補星とされている。

3 中性子星観測装置 NICER

NICER[8]は、2017年6月に国際宇宙ステーション(ISS) に搭載された中性子星観測装置である。NICERには、56個 のX線集光系(XRC)とシリコンドリフト検出器(SDD) が取り付けられいる。各XRCは、約30arcminの天空か らX線を集め、小型のSDDに集光し、SDDはそのエネル ギーを100ナノ秒という精度で検出し記録する。これによ り、0.2 – 12keVのX線帯域において、中性子星やブラッ クホールなどの高密度天体からのX線放射を検出できる。 これは早い時間変動を特徴とするブラックホール連星の研 究に最適の衛星といえる。

4 NICER による Cyg X-1の観測

NICER による Cyg X-1 の観測は、2017 年 6 月 30 日 (MJD57934) から 2020 年 11 月 23 日 (MJD59176) にか けて 37 回行われた。国際宇宙ステーションに搭載されてい る全天監視装置 (MAXI) で得られた長期時間変動を図 1 に 示す。縦軸に X 線強度(フラックス)、横軸に修正ユリウ ス歴 MJD をとり、X 線強度を時間の関数としてプロット したものである。今回はデータを基に、ライトカーブ(光 度曲線)とハードネスレシオ(硬度比)を求めた。グラフ の上は 2-20 keV のフラックス、下は 4-10 keV のフラックス を 2-4 keV のフラックスで割ったもの(ハードネスレシオ HR)を示している。この図から、明るい時期にはハードネ スレシオが小さく、暗い期間ではハードネスレシオが大き いことがわかる。観測データより、X 線強度が大きく変動 している 2 つの観測日のデータに対して、解析を行った。

Figure 1: ライトカーブとハードネスレシオ

5 スペクトル解析

NASA の解析パッケージ heasoft とデータベース caldb、 そして解析データをダウンロードし、スペクトルやライト カーブを作成するためのツールで XSELECT と、X 線スペ クトルのフィットのためのパッケージ XSPEC を用いて、ス ペクトルの解析を行った。本研究では heasoft はバージョ ン 6.29 を使用する。始めにバックグラウンド処理として、 nicerl2 でデータのスクリーニング処理、nibackgen3C50 で バックグラウンドとソースの作成を行った。

5.1 観測1(2018/02/20)のモデルフィット

まずは、全体の傾向をみるために、べき乗則の関数である エネルギーの光子数 f(E) が $KE^{-\Gamma}$ で記述される power-law モデル¹を仮定して、星間吸収を記述する tbabs²というモデ ルをかけてフィッティングを行った。その結果、 $X_{\nu}^{2}(dof) =$ 0.939(527) となり、データは再現したが、より物理的な描 像で評価するため、次に power-law モデルを逆コンプトン 散乱モデルである nthcomp³に置き換えて評価した。その 結果を表 1 に示す。nthcomp は power-law モデルより、熱 的コンプトン化の連続的な形を詳しく求めることができる。 パラメータは、光子指数 τ 、電子温度 kT_{e} 、黒体温度 kT_{bb} 、 int_type、redshift、そして normalization である。表 1 よ り、 $\Gamma = 1.727$ であり、ブラックホールの典型的な値であっ たため、観測 1 は low state と考えらてる。フラックスは 1.63×10^{-15} W/cm² が得られ、距離 7.5 × 10¹⁶ km を仮定 して、X 線光度は 1.15×10^{30} W と計算できた。これは質量

降着によって輝く天体の光度の上限値であるエディントン 限界光度 $L_{edd}(22M_{\odot}$ のブラックホールでは 2.76 × 10³² W) の 0.42%である。

Table 1: 観測 1 tbabs*nthcomp モデルのパラメータ

model	Component	Parameter	Unit	ベストフィット値
1	TBabs	nH	$10^{22}/cm^2$	$0.279^{+0.033}_{-0.050}$
2	nthComp	Gamma		$1.727^{+0.0097}_{-0.0122}$
3	nthComp	kT_e	keV	$5.21^{+2.90}_{-0.90}$
4	nthComp	kT_bb	keV	$0.171^{+0.034}_{-0.034}$
5	nthComp	inp_type	0/1	0.0
6	nthComp	Redshift		0.0
7	nthcomp	norm		$1.522^{+0.091}_{-0.125}$
		flux	W/cm^2	8.28×10^{-16}
		flux(nH=0)	W/cm^2	8.76×10^{-16}
		flux(nH=0, $0.1 \sim 100.0 \text{keV}$)	W/cm^2	1.63×10^{-15}
		$X_{\nu}^{2}(dof)$		0.904(525)

5.2 観測2(2018/03/27)のモデルフィット

まず観測1と同様に、power-law を仮定して星間吸収を かけたモデルと、nthcomp を仮定して星間吸収をかけたモ デルでフィッティングを行ったが、それぞれ $X_{\nu}^{2}(dof) =$ 173.92(853),174.92(852) となり、全くデータを再現できな かった。次に nthcomp に、新たに diskbb⁴ を追加したモ デルと、smedge と gaussian を追加したモデルでフィッテ ィングを行った。diskbb は光学的に厚く幾何学的に薄い降 着円盤からの放射を記述し、ブラックホールに近いほど円 盤が高温になるため、スペクトルは多温度黒体の黒体放射 の足し合わせとなる。パラメータは円盤内縁の温度 kTin と normalization である。normalization は天体までの距離 d、内縁半径 $r_i n$ 、円盤の傾斜角 θ で決まり、 $(r_{in}/d)^2 \cos \theta$ と表される。smedge⁵は、放射の円盤による反射成分を模 擬するために、鉄元素による吸収端を表したものである。 gaussian⁶は、鉄輝線を正規分布で表したものである。結果 は、 $X_{\mu}^{2}(dof) = 13.89(851), 0.555(845)$ となり、理想の値で ある1に大きく近づいたものの、再現することはできなかっ た。さらに、diskbbとnthcompを足したものに星間吸収をか けたモデルと、diskbb と nthcomp と gauss を足したものに 星間吸収をかけたモデルでフィッティングを行ったところ、前 者のモデルでは、 ${X_{
u}}^2(dof)=1.43(850)$ となり再現できなか ったが、後者のモデル「tbabs*(diskbb+nthcomp+gauss)」 では、 $X_{\nu}^{2}(dof) = 0.58(847)$ となり、最もデータを再現する ことができた。その結果を表2に示す。表2より、Γ=2.256 であり、観測2は high state と考えらてる。フラックスは 7.79×10⁻¹⁵ W/cm² が得られ、X 線光度は 5.51×10³⁰ W と計算できた。これはエディントン限界光度 Ledd の 2.00% である。

Table 2: 観測 2 tbabs*(diskbb+nthcomp+gauss) モデルの パラメータ

model	Component	Farameter	Umt	ハヘドノ 1ツド旭	
1	TBabs	nH	$10^{22}/cm^2$	$0.666^{+0.020}_{-0.020}$	
2	diskbb	Tin	keV	$0.3719^{+0.0045}_{-0.0045}$	
3	diskbb	norm		$1.245^{+0.097}_{-0.089} \times 10^5$	
4	nthComp	Gamma		$2.254^{+0.012}_{-0.019}$	
5	nthComp	kT_e	keV	10.00	
6	nthComp	kT_bb	keV	0.37	
7	nthComp	inp_type 0/1		0.0	
8	nthComp	Redshift		0.0	
9	nthComp	norm		$3.22^{+0.11}_{-0.11}$	
10	gaussian	LineE	keV	$6.479^{+0.050}_{-0.053}$	
11	gaussian	Sigma	keV	0.79	
12	gaussian	norm		$0.0286^{+0.0023}_{-0.0029}$	
		flux	W/cm^2	2.68×10^{-15}	
		flux(nH=0)	W/cm^2	3.53×10^{-15}	
		$flux(nH=0, 0.1 \sim 100.0 \text{ keV})$	W/cm^2	7.79×10^{-15}	
		$X_{\nu}^{2}(dof)$		0.58(847)	

 $^{^4\}rm https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node162.html <math display="inline">^5\rm https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node259.html <math display="inline">^6\rm https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node175.html$

Table 3: 各観測の L_x と L_{Edd} に対する L_x の比

	Unit	観測 1	観測 2	
L_x	W	$1.15 imes 10^{30}$	5.51×10^{30}	
L_x/L_{Edd}		0.0042	0.020	

6 時間変動解析

NASA の X 線スペクトルの計算ツールである powspec を 用いて、それぞれの観測に対して X 線スペクトル PSD を 作成し、図 2、3 に示す。

7 まとめと考察

CygnusX-1 のスペクトル解析より、観測 1 は「tbabs *nthcomp モデル」、観測 2 は「tbabs * (diskbb + nthcomp +gauss) モデル」が、最もスペクトルを再現することができ た。そして、観測 1,2 それぞれの X 線光度 L_x と、エディン トン限界光度 L_{Edd} に対する X 線光度 L_x の比を、表 3 に 示す。表 3 より、観測 1 より観測 2 のほうが L_x/L_{Edd} の値 が大きいことがわかる。そして、観測 2 での降着円盤は図 4 のようになっていると推測される。

Figure 4: 観測 2 の降着円盤

References

- 1] X 線で探る宇宙 小山勝二 初版第二刷 p.103
- [2] Liang, E. P., & Nolan, P. L., 1984, Space Science Reviews, Volume 38, Issue 3-4, pp. 353-384
 - J. C. A. Miller-Jones et al.: Science, 371, 1046 (2022).
- [4] M. Nauenberg and G. Chaplined Jr.: Astrophys. J. 179, 277 (1973).
- [5] S. L. Shapiro and S. A. Teukolsky: black-holes, White Dwarfs, and Neutron Stars-The physics of compact objects (A Wiley-Interscience Publication, 1983)
- [6] Shin ' ya Yamada et al., 2013, the Astronomical Society of Japan, Volume 65, Issue 4
- [7] C. Done, M. Gierli ´nski, and A. Kubota: The Astron. Astrophys. Review 15, 1 (2007).
 -] https://heasarc.gsfc.nasa.gov/docs/nicer/
- [9] G. B. Rybicki and A. P. Lightman: Radiative Process in Astrophysics, Harvard-Smithonian Center for Astrophysics (WILEY-VCH Verlag GmbH & Co. KGaA, 1979).